Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240745

RESUMO

Many postdoctoral fellows and scholars who hope to secure tenure-track faculty positions in the United States apply to the National Institutes of Health (NIH) for a Pathway to Independence Award. This award has two phases (K99 and R00) and provides funding for up to 5 years. Using NIH data for the period 2006-2022, we report that ~230 K99 awards were made every year, representing up to ~$250 million annual investment. About 40% of K99 awardees were women and ~89% of K99 awardees went on to receive an R00 award annually. Institutions with the most NIH funding produced the most recipients of K99 awards and recruited the most recipients of R00 awards. The time between a researcher starting an R00 award and receiving a major NIH award (such as an R01) ranged between 4.6 and 7.4 years, and was significantly longer for women, for those who remained at their home institution, and for those hired by an institution that was not one of the 25 institutions with the most NIH funding. Shockingly, there has yet to be a K99 awardee at a historically Black college or university. We go on to show how K99 awardees flow to faculty positions, and to identify various factors that influence the future success of individual researchers and, therefore, also influence the composition of biomedical faculty at universities in the United States.


Assuntos
Distinções e Prêmios , Pesquisa Biomédica , Humanos , Feminino , Estados Unidos , Masculino , National Institutes of Health (U.S.) , Pessoal de Saúde , Pesquisadores
2.
Am J Physiol Heart Circ Physiol ; 326(2): H317-H333, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038719

RESUMO

Mitochondria are cellular organelles critical for ATP production and are particularly relevant to cardiovascular diseases including heart failure, atherosclerosis, ischemia-reperfusion injury, and cardiomyopathies. With advancing age, even in the absence of clinical disease, mitochondrial homeostasis becomes disrupted (e.g., redox balance, mitochondrial DNA damage, oxidative metabolism, and mitochondrial quality control). Mitochondrial dysregulation leads to the accumulation of damaged and dysfunctional mitochondria, producing excessive reactive oxygen species and perpetuating mitochondrial dysfunction. In addition, mitochondrial DNA, cardiolipin, and N-formyl peptides are potent activators of cell-intrinsic and -extrinsic inflammatory pathways. These age-related mitochondrial changes contribute to the development of cardiovascular diseases. This review covers the impact of aging on mitochondria and links these mechanisms to therapeutic implications for age-associated cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismo
3.
J Clin Invest ; 134(3)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085578

RESUMO

Itaconate has emerged as a critical immunoregulatory metabolite. Here, we examined the therapeutic potential of itaconate in atherosclerosis. We found that both itaconate and the enzyme that synthesizes it, aconitate decarboxylase 1 (Acod1, also known as immune-responsive gene 1 [IRG1]), are upregulated during atherogenesis in mice. Deletion of Acod1 in myeloid cells exacerbated inflammation and atherosclerosis in vivo and resulted in an elevated frequency of a specific subset of M1-polarized proinflammatory macrophages in the atherosclerotic aorta. Importantly, Acod1 levels were inversely correlated with clinical occlusion in atherosclerotic human aorta specimens. Treating mice with the itaconate derivative 4-octyl itaconate attenuated inflammation and atherosclerosis induced by high cholesterol. Mechanistically, we found that the antioxidant transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), was required for itaconate to suppress macrophage activation induced by oxidized lipids in vitro and to decrease atherosclerotic lesion areas in vivo. Overall, our work shows that itaconate suppresses atherogenesis by inducing Nrf2-dependent inhibition of proinflammatory responses in macrophages. Activation of the itaconate pathway may represent an important approach to treat atherosclerosis.


Assuntos
Doenças da Aorta , Aterosclerose , Succinatos , Camundongos , Humanos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Macrófagos/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Doenças da Aorta/metabolismo
4.
Nat Aging ; 3(12): 1576-1590, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37996758

RESUMO

Aging is a strong risk factor for atherosclerosis and induces accumulation of memory CD8+ T cells in mice and humans. Biological changes that occur with aging lead to enhanced atherosclerosis, yet the role of aging on CD8+ T cells during atherogenesis is unclear. In this study, using femle mice, we found that depletion of CD8+ T cells attenuated atherogenesis in aged, but not young, animals. Furthermore, adoptive transfer of splenic CD8+ T cells from aged wild-type, but not young wild-type, donor mice significantly enhanced atherosclerosis in recipient mice lacking CD8+ T cells. We also characterized T cells in healthy and atherosclerotic young and aged mice by single-cell RNA sequencing. We found specific subsets of age-associated CD8+ T cells, including a Granzyme K+ effector memory subset, that accumulated and was clonally expanded within atherosclerotic plaques. These had transcriptomic signatures of T cell activation, migration, cytotoxicity and exhaustion. Overall, our study identified memory CD8+ T cells as therapeutic targets for atherosclerosis in aging.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Animais , Camundongos , Idoso , Linfócitos T CD8-Positivos , Células T de Memória , Camundongos Endogâmicos C57BL
5.
J Gerontol A Biol Sci Med Sci ; 78(10): 1733-1739, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37148367

RESUMO

The National Institute on Aging sponsored a symposium at the Gerontological Society of America (GSA) annual meeting in Indianapolis, Indiana, to discuss recent discoveries related to senescent and inflammatory mechanisms in aging and disease. Consistent with the 2022 Biological Sciences GSA program led by Dr. Rozalyn Anderson, the symposium featured early-stage investigators and a leader in the field of geroscience research. Cell senescence and immune interactions coordinate homeostatic and protective programming throughout the life span. Dysfunctional communication in this exchange eventuates in inflammation-related compositional changes in aged tissues, including propagation of the senescence-associated secretory phenotype and accumulation of senescent and exhausted immune cells. Presentations in this symposium explored senescent and immune-related dysfunction in aging from diverse viewpoints and featured emerging cellular and molecular methods. A central takeaway from the event was that the use of new models and approaches, including single-cell -omics, novel mouse models, and 3D culture systems, is revealing dynamic properties and interactions of senescent and immune cell fates. This knowledge is critical for devising new therapeutic approaches with important translational relevance.


Assuntos
Envelhecimento , National Institute on Aging (U.S.) , Animais , Estados Unidos , Camundongos , Fenótipo , Senescência Celular , Inflamação
6.
bioRxiv ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37162873

RESUMO

Many postdoctoral fellows and scholars who hope to secure tenure-track faculty positions in the United States apply to the National Institutes of Health (NIH) for a Pathway to Independence Award. This award has two phases (K99 and R00) and provides funding for up to five years. Using NIH data for the period 2006-2022, we report that ~230 K99 awards were made every year, representing up to ~$250 million annual investment. About 40% of K99 awardees were women and ~89% of K99 awardees went on to receive an R00 award annually. Institutions with the most NIH funding produced the most recipients of K99 awards and recruited the most recipients of R00 awards. The time between a researcher starting an R00 award and receiving a major NIH award (such as an R01) ranged between 4.6 and 7.4 years, and was significantly longer for women, for those who remained at their home institution, and for those hired by an institution that was not one of the 25 institutions with the most NIH funding. Shockingly, there has yet to be a K99 awardee at a historically Black college or university. We go on to show how K99 awardees flow to faculty positions, and to identify various factors that influence the future success of individual researchers and, therefore, also influence the composition of biomedical faculty at universities in the US.

7.
J Clin Invest ; 132(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36194491

RESUMO

People with kidney disease are disproportionately affected by atherosclerosis for unclear reasons. Soluble urokinase plasminogen activator receptor (suPAR) is an immune-derived mediator of kidney disease, levels of which are strongly associated with cardiovascular outcomes. We assessed suPAR's pathogenic involvement in atherosclerosis using epidemiologic, genetic, and experimental approaches. We found serum suPAR levels to be predictive of coronary artery calcification and cardiovascular events in 5,406 participants without known coronary disease. In a genome-wide association meta-analysis including over 25,000 individuals, we identified a missense variant in the plasminogen activator, urokinase receptor (PLAUR) gene (rs4760), confirmed experimentally to lead to higher suPAR levels. Mendelian randomization analysis in the UK Biobank using rs4760 indicated a causal association between genetically predicted suPAR levels and atherosclerotic phenotypes. In an experimental model of atherosclerosis, proprotein convertase subtilisin/kexin-9 (Pcsk9) transfection in mice overexpressing suPAR (suPARTg) led to substantially increased atherosclerotic plaques with necrotic cores and macrophage infiltration compared with those in WT mice, despite similar cholesterol levels. Prior to induction of atherosclerosis, aortas of suPARTg mice excreted higher levels of CCL2 and had higher monocyte counts compared with WT aortas. Aortic and circulating suPARTg monocytes exhibited a proinflammatory profile and enhanced chemotaxis. These findings characterize suPAR as a pathogenic factor for atherosclerosis acting at least partially through modulation of monocyte function.


Assuntos
Aterosclerose , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Animais , Camundongos , Aterosclerose/genética , Biomarcadores , Estudo de Associação Genômica Ampla , Monócitos , Pró-Proteína Convertase 9 , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Fatores de Risco , Ativador de Plasminogênio Tipo Uroquinase , Humanos
9.
Arterioscler Thromb Vasc Biol ; 42(8): 1060-1076, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35510553

RESUMO

BACKGROUND: Aging enhances most chronic diseases but its impact on human aortic tissue in health and in thoracic aortic aneurysms (TAA) remains unclear. METHODS: We employed a human aortic biorepository of healthy specimens (n=17) and those that underwent surgical repair for TAA (n=20). First, we performed proteomics comparing aortas of healthy donors to aneurysmal specimens, in young (ie, <60 years of age) and old (ie, ≥60 years of age) subjects. Second, we measured proteins, via immunoblotting, involved in mitophagy (ie, Parkin) and also mitochondrial-induced inflammatory pathways, specifically TLR (toll-like receptor) 9, STING (stimulator of interferon genes), and IFN (interferon)-ß. RESULTS: Proteomics revealed that aging transformed the aorta both quantitatively and qualitatively from health to TAA. Whereas young aortas exhibited an enrichment of immunologic processes, older aortas exhibited an enrichment of metabolic processes. Immunoblotting revealed that the expression of Parkin directly correlated to subject age in health but inversely to subject age in TAA. In TAA, but not in health, phosphorylation of STING and the expression of IFN-ß was impacted by aging regardless of whether subjects had bicuspid or tricuspid valves. In subjects with bicuspid valves and TAAs, TLR9 expression positively correlated with subject age. Interestingly, whereas phosphorylation of STING was inversely correlated with subject age, IFN-ß positively correlated with subject age. CONCLUSIONS: Aging transforms the human aortic proteome from health to TAA, leading to a differential regulation of biological processes. Our results suggest that the development of therapies to mitigate vascular diseases including TAA may need to be modified depending on subject age.


Assuntos
Aneurisma da Aorta Torácica , Envelhecimento , Aorta/metabolismo , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Humanos , Interferons , Proteoma , Ubiquitina-Proteína Ligases
10.
Nat Rev Cardiol ; 18(1): 58-68, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32918047

RESUMO

The number of old people is rising worldwide, and advancing age is a major risk factor for atherosclerotic cardiovascular disease. However, the mechanisms underlying this phenomenon remain unclear. In this Review, we discuss vascular intrinsic and extrinsic mechanisms of how ageing influences the pathology of atherosclerosis. First, we focus on factors that are extrinsic to the vasculature. We discuss how ageing affects the development of myeloid cells leading to the expansion of certain myeloid cell clones and induces changes in myeloid cell functions that promote atherosclerosis via inflammation, including a potential role for IL-6. Next, we describe vascular intrinsic factors by which ageing promotes atherogenesis - in particular, the effects on mitochondrial function. Studies in mice and humans have shown that ageing leads to a decline in vascular mitochondrial function and impaired mitophagy. In mice, ageing is associated with an elevation in the levels of the inflammatory cytokine IL-6 in the aorta, which participates in a positive feedback loop with the impaired vascular mitochondrial function to accelerate atherogenesis. We speculate that vascular and myeloid cell ageing synergize, via IL-6 signalling, to accelerate atherosclerosis. Finally, we propose future avenues of clinical investigation and potential therapeutic approaches to reduce the burden of atherosclerosis in old people.


Assuntos
Envelhecimento , Aterosclerose/fisiopatologia , Interleucina-6 , Envelhecimento/sangue , Envelhecimento/imunologia , Aterosclerose/sangue , Aterosclerose/imunologia , Humanos , Interleucina-6/sangue , Interleucina-6/imunologia
11.
J Am Heart Assoc ; 9(23): e017820, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33225820

RESUMO

Background The blood-brain barrier (BBB) is critical for cerebrovascular health. Although aging impairs the integrity of the BBB, the mechanisms behind this phenomenon are not clear. As mitochondrial components activate inflammation as mitochondria become dysfunctional, we examined how aging impacts cerebrovascular mitochondrial function, mitophagy, and inflammatory signaling; and whether any alterations correlate with BBB function. Methods and Results We isolated cerebral vessels from young (2-3 months of age) and aged (18-19 months of age) mice and found that aging led to increases in the cyclin-dependent kinase inhibitor 1 senescence marker with impaired mitochondrial function, which correlated with aged mice exhibiting increased BBB leak compared with young mice. Cerebral vessels also exhibited increased expression of mitophagy proteins Parkin and Nix with aging. Using mitophagy reporter (mtKeima) mice, we found that the capacity to increase mitophagy from baseline within the cerebral vessels on rotenone treatment was reduced with aging. Aging within the cerebral vessels also led to the upregulation of the stimulator of interferon genes and increased interleukin 6 (IL-6), a cytokine that alters mitochondrial function. Importantly, exogenous IL-6 treatment of young cerebral vessels upregulated mitophagy and Parkin and impaired mitochondrial function; whereas inhibiting IL-6 in aged cerebral vessels reduced Parkin expression and increased mitochondrial function. Furthermore, treating cerebral vessels of young mice with mitochondrial N-formyl peptides upregulated IL-6, increased Parkin, and reduced Claudin-5, a tight junction protein integral to BBB integrity. Conclusions Aging alters the cerebral vasculature to impair mitochondrial function and mitophagy and increase IL-6 levels. These alterations may impair BBB integrity and potentially reduce cerebrovascular health with aging.


Assuntos
Envelhecimento/fisiologia , Barreira Hematoencefálica/fisiologia , Artérias Cerebrais/metabolismo , Interleucina-6/metabolismo , Mitocôndrias/fisiologia , Mitofagia/fisiologia , Animais , Artérias Cerebrais/patologia , Claudina-5/metabolismo , Feminino , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
12.
Circ Res ; 126(3): 298-314, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31818196

RESUMO

Rationale: Aging is one of the strongest risk factors for atherosclerosis. Yet whether aging increases the risk of atherosclerosis independently of chronic hyperlipidemia is not known. Objective: To determine if vascular aging before the induction of hyperlipidemia enhances atherogenesis. Methods and Results: We analyzed the aortas of young and aged normolipidemic wild type, disease-free mice and found that aging led to elevated IL (interleukin)-6 levels and mitochondrial dysfunction, associated with increased mitophagy and the associated protein Parkin. In aortic tissue culture, we found evidence that with aging mitochondrial dysfunction and IL-6 exist in a positive feedback loop. We triggered acute hyperlipidemia in aged and young mice by inducing liver-specific degradation of the LDL (low-density lipoprotein) receptor combined with a 10-week western diet and found that atherogenesis was enhanced in aged wild-type mice. Hyperlipidemia further reduced mitochondrial function and increased the levels of Parkin in the aortas of aged mice but not young mice. Genetic disruption of autophagy in smooth muscle cells of young mice exposed to hyperlipidemia led to increased aortic Parkin and IL-6 levels, impaired mitochondrial function, and enhanced atherogenesis. Importantly, enhancing mitophagy in aged, hyperlipidemic mice via oral administration of spermidine prevented the increase in aortic IL-6 and Parkin, attenuated mitochondrial dysfunction, and reduced atherogenesis. Conclusions: Before hyperlipidemia, aging elevates IL-6 and impairs mitochondrial function within the aorta, associated with enhanced mitophagy and increased Parkin levels. These age-associated changes prime the vasculature to exacerbate atherogenesis upon acute hyperlipidemia. Our work implies that novel therapeutics aimed at improving vascular mitochondrial bioenergetics or reducing inflammation before hyperlipidemia may reduce age-related atherosclerosis.


Assuntos
Envelhecimento/metabolismo , Aterosclerose/metabolismo , Endotélio Vascular/metabolismo , Lipoproteínas LDL/metabolismo , Mitocôndrias/metabolismo , Envelhecimento/patologia , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Endotélio Vascular/patologia , Retroalimentação Fisiológica , Feminino , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Mitofagia , Receptores de LDL/metabolismo , Espermidina/farmacologia , Espermidina/uso terapêutico , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Oxid Med Cell Longev ; 2017: 7317251, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29098063

RESUMO

Blood-based bioenergetic profiling provides a minimally invasive assessment of mitochondrial health shown to be related to key features of aging. Previous studies show that blood cells recapitulate mitochondrial alterations in the central nervous system under pathological conditions, including the development of Alzheimer's disease. In this study of nonhuman primates, we focus on mitochondrial function and bioenergetic capacity assessed by the respirometric profiling of monocytes, platelets, and frontal cortex mitochondria. Our data indicate that differences in the maximal respiratory capacity of brain mitochondria are reflected by CD14+ monocyte maximal respiratory capacity and platelet and monocyte bioenergetic health index. A subset of nonhuman primates also underwent [18F] fluorodeoxyglucose positron emission tomography (FDG-PET) imaging to assess brain glucose metabolism. Our results indicate that platelet respiratory capacity positively correlates to measures of glucose metabolism in multiple brain regions. Altogether, the results of this study provide early evidence that blood-based bioenergetic profiling is related to brain mitochondrial metabolism. While these measures cannot substitute for direct measures of brain metabolism, provided by measures such as FDG-PET, they may have utility as a metabolic biomarker and screening tool to identify individuals exhibiting systemic bioenergetic decline who may therefore be at risk for the development of neurodegenerative diseases.


Assuntos
Encéfalo/fisiopatologia , Metabolismo Energético/genética , Animais , Feminino , Haplorrinos , Humanos
14.
Redox Biol ; 10: 65-77, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27693859

RESUMO

Blood based bioenergetic profiling strategies are emerging as potential reporters of systemic mitochondrial function; however, the extent to which these measures reflect the bioenergetic capacity of other tissues is not known. The premise of this work is that highly metabolically active tissues, such as skeletal and cardiac muscle, are susceptible to differences in systemic bioenergetic capacity. Therefore, we tested whether the respiratory capacity of blood cells, monocytes and platelets, are related to contemporaneous respirometric assessments of skeletal and cardiac muscle mitochondria. 18 female vervet/African green monkeys (Chlorocebus aethiops sabaeus) of varying age and metabolic status were examined for this study. Monocyte and platelet maximal capacity correlated with maximal oxidative phosphorylation capacity of permeabilized skeletal muscle (R=0.75, 95% confidence interval [CI]: 0.38-0.97; R=0.51, 95%CI: 0.05-0.81; respectively), isolated skeletal muscle mitochondrial respiratory control ratio (RCR; R=0.70, 95%CI: 0.35-0.89; R=0.64, 95%CI: 0.23-0.98; respectively), and isolated cardiac muscle mitochondrial RCR (R=0.55, 95%CI: 0.22-0.86; R=0.58, 95%CI: 0.22-0.85; respectively). These results suggest that blood based bioenergetic profiling may be used to report on the bioenergetic capacity of muscle tissues. Blood cell respirometry represents an attractive alternative to tissue based assessments of mitochondrial function in human studies based on ease of access and the minimal participant burden required by these measures.


Assuntos
Plaquetas/metabolismo , Metabolismo Energético , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Musculares/metabolismo , Monócitos/metabolismo , Animais , Biomarcadores/metabolismo , Respiração Celular , Chlorocebus aethiops , Feminino , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio
15.
BMC Obes ; 2: 40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26448868

RESUMO

BACKGROUND: Mitochondrial function declines with age; however, the relationship between adiposity and mitochondrial function among older adults is unclear. This study examined relationships between skeletal muscle mitochondrial content and electron transport chain complex 2 driven respiration with whole body and thigh composition, body fat distribution, and insulin sensitivity in older adults. METHODS: 25 healthy, sedentary, weight-stable men (N = 13) and women (N = 12) >65 years of age, with a BMI range of 18-35 kg/m(2), participated in this study. Vastus lateralis biopsies were analyzed for citrate synthase (CS) activity and succinate mediated respiration of isolated mitochondria. Whole body and thigh composition were measured by DXA and CT. HOMA-IR was calculated using fasting glucose and insulin as an estimate of insulin sensitivity. RESULTS: Similar to reports in middle-aged adults, skeletal muscle CS activity was negatively correlated with BMI (R = -0.43) in our cohort of older adults. Higher total and thigh adiposity were correlated with lower CS activity independent of BMI (R = -0.50 and -0.71 respectively). Maximal complex 2 driven mitochondrial respiration was negatively correlated with lower body adiposity in males (R = -0.66). In this cohort of non-diabetic older adults, both HOMA-IR and insulin were positively correlated with CS activity when controlling for BMI (R = 0.57 and 0.66 respectively). CONCLUSIONS: Adiposity and body composition are correlated with skeletal muscle mitochondrial content and electron transport chain function in healthy, sedentary, community dwelling, older adults. Specific relationships of mitochondrial bioenergetics with gender and insulin sensitivity are also apparent. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT01049698.

16.
Exp Gerontol ; 70: 84-91, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26226578

RESUMO

BACKGROUND: Physical function and strength decline with age and lead to limited mobility and independence in older adults. Alterations in mitochondrial function are thought to underlie numerous age-related changes, including declining physical ability. Recent studies suggest that systemic changes in bioenergetic capacity may be reported by analyzing mitochondrial function in circulating cells. The objective of this study was to determine whether the bioenergetic capacity of peripheral blood mononuclear cells (PBMCs) is related to differences in physical function among older, overweight/obese, adults. To address this, we tested the hypothesis that greater PBMC respirometric capacity would be associated with better physical function, muscular strength, leg lean mass, and muscle quality. Furthermore, we tested whether the respirometric capacity of PBMCs is related to cellular composition and inflammatory status reported by interleukin-6 (IL-6). METHODS: Fasted PBMC respiration (pmol/min/500,000 cells), expanded short physical performance battery (Ex-SPPB), peak knee extensor (KE) strength (Nm), grip strength (kg), leg lean mass (kg, via dual energy X-ray absorptiometry [DXA]), muscle quality (Nm/kg), and plasma IL-6 (pg/mL) were analyzed in 15 well-functioning, community-dwelling, sedentary overweight/obese older men (n=9) and women (n=6) aged 65 to 78 (mean 68.3 ± 3.5 years). Pearson and partial correlations were calculated to determine associations between PBMC respiration and these variables. RESULTS: Higher maximal respiration of PBMCs was associated with better Ex-SPPB (r=0.58, p=0.02), greater KE strength (r=0.60, p=0.02), greater grip strength (r=0.52, p=0.05) and lower IL-6 (r=-0.58, p=0.04). Higher spare respiratory capacity was associated with better Ex-SPPB (r=0.59, p=0.02), greater KE strength (r=0.60, p=0.02), greater grip strength (r=0.54, p=0.04), greater leg muscle quality (r=0.56, p=0.04), and lower IL-6 (r=-0.55, p=0.05). Monocyte and lymphocyte counts were not related to PBMC respiratory capacity. CONCLUSIONS: Our results indicate that respirometric profiles of readily obtainable blood cells are associated with physical function and strength. Future studies should be undertaken in order to determine whether blood-based bioenergetic profiling can provide an objective index of systemic mitochondrial health.


Assuntos
Inflamação/sangue , Leucócitos Mononucleares/fisiologia , Sobrepeso/sangue , Aptidão Física/fisiologia , Idoso , Biomarcadores/sangue , Respiração Celular/fisiologia , Metabolismo Energético/fisiologia , Teste de Esforço/métodos , Feminino , Humanos , Inflamação/fisiopatologia , Interleucina-6/sangue , Contagem de Leucócitos , Masculino , Força Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Obesidade/sangue , Obesidade/fisiopatologia , Sobrepeso/fisiopatologia
17.
J Vis Exp ; (96)2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25741892

RESUMO

Respirometric profiling of isolated mitochondria is commonly used to investigate electron transport chain function. We describe a method for obtaining samples of human Vastus lateralis, isolating mitochondria from minimal amounts of skeletal muscle tissue, and plate based respirometric profiling using an extracellular flux (XF) analyzer. Comparison of respirometric profiles obtained using 1.0, 2.5 and 5.0 µg of mitochondria indicate that 1.0 µg is sufficient to measure respiration and that 5.0 µg provides most consistent results based on comparison of standard errors. Western blot analysis of isolated mitochondria for mitochondrial marker COX IV and non-mitochondrial tissue marker GAPDH indicate that there is limited non-mitochondrial contamination using this protocol. The ability to study mitochondrial respirometry in as little as 20 mg of muscle tissue allows users to utilize individual biopsies for multiple study endpoints in clinical research projects.


Assuntos
Biópsia por Agulha/métodos , Mitocôndrias Musculares/química , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Consumo de Oxigênio/fisiologia , Humanos , Oxirredução
18.
J Gerontol A Biol Sci Med Sci ; 70(11): 1394-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25030980

RESUMO

BACKGROUND: Gait speed provides an integrated measure of physical ability that is predictive of morbidity, disability, and mortality in older adults. Energy demands associated with walking suggest that mitochondrial bioenergetics may play a role in gait speed. Here, we examined the relationship between gait speed and skeletal muscle mitochondrial bioenergetics, and further evaluated whether blood-based bioenergetic profiling might have similar associations with gait speed. METHODS: Participants in this study were comprised of two subsets (n = 17 per subset) and were overweight/obese (body mass index, 30.9 ± 2.37), well-functioning, community-dwelling older adults (69.1 ± 3.69 years) without major comorbidity. Gait speeds were calculated from a fast-paced 400 m walk test. Respiratory control ratios were measured from mitochondria isolated from leg skeletal muscle biopsies from one subset. Maximal respiration and spare respiratory capacity were measured from peripheral blood mononuclear cells from the other subset. RESULTS: Individual differences in gait speed correlated directly with respiratory control ratio of mitochondria isolated from skeletal muscle (r = .536, p = .027) and with both maximal respiration and spare respiratory capacity of peripheral blood mononuclear cells (r = .585 and p = .014; r = .609 and p = .009, respectively). CONCLUSIONS: The bioenergetic profile of mitochondria isolated from skeletal muscle is associated with gait speed in older adults. Blood-based bioenergetic profiling is also associated with gait speed and may provide an alternative measure of mitochondrial function.


Assuntos
Metabolismo Energético/fisiologia , Marcha/fisiologia , Leucócitos Mononucleares/fisiologia , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/fisiologia , Consumo de Oxigênio/fisiologia , Fatores Etários , Idoso , Respiração Celular/fisiologia , Feminino , Avaliação Geriátrica , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...